If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x^2+33x+54=0
a = 5; b = 33; c = +54;
Δ = b2-4ac
Δ = 332-4·5·54
Δ = 9
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{9}=3$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(33)-3}{2*5}=\frac{-36}{10} =-3+3/5 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(33)+3}{2*5}=\frac{-30}{10} =-3 $
| -1/4(2x-4=-4 | | (10+v)/9=-1 | | -(3-k)-2(1-k)=-5 | | 2t-10=8 | | 2x+15=5/6 | | 119+(4x)=180 | | 8x+23=6x+39 | | 2n=n3+4 | | 5(n+2=3/5(5+10n) | | -3=-0.4m+1.4m | | 5(n+2=(3/5)(5+10n) | | 10-6x=4x+16 | | .83(12k+30)=2k+17 | | -7x-22=4x+11 | | -5.6d-2d+2.2d= | | 4a+27=1 | | -3=-0.4m+1m4m | | -2k+1=-4k+-32 | | 3(t+1)=3(t-3 | | -2=-n+5/6+2/3 | | 6g+2(-6+3g)=1-9 | | -2k+1=-4k-(-32) | | -4(3-6d)=9(2d-2 | | 2x^2-41x-74=0 | | -2(m-2)+6(m-8)=-67 | | X+55+x+55+90=180 | | x/2+1+3×/4=-9 | | 2v+2(1+4v)=62 | | 12-13x=-1 | | -6h+13=2h-11 | | 2n=6n+6 | | 4x-5+2=x+13 |